Skip to main content
CO2 release by mild heating of the BIG-bicarbonate solid. The released CO2 gas is trapped in the orange balloon, while the released water vapors are trapped by condensation in the ice-cooled U-shaped tube. Credit: Neil J. Williams and Erick Holguin.

Scientists at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have developed a process that could remove CO2 from coal-burning power plant emissions in a way that is similar to how soda lime works in scuba diving rebreathers. Their research, published January 31 in...

Researchers used machine learning methods on the ORNL Compute and Data Environment for Science, or CADES, to map vegetation communities in the Kougarok Watershed on the Seward Peninsula of Alaska. The colors denote different types of vegetation, such as w

A team of scientists led by Oak Ridge National Laboratory used machine learning methods to generate a high-resolution map of vegetation growing in the remote reaches of the Alaskan tundra.

At the salt–metal interface, thermodynamic forces drive chromium from the bulk of a nickel alloy, leaving a porous, weakened layer. Impurities in the salt drive further corrosion of the structural material. Credit: Stephen Raiman/Oak Ridge National Labora

Oak Ridge National Laboratory scientists analyzed more than 50 years of data showing puzzlingly inconsistent trends about corrosion of structural alloys in molten salts and found one factor mattered most—salt purity.

Researchers analyzed the oxygen structure (highlighted in red) found in a perovskite’s crystal structure at room temperature, 500°C and 900°C using neutron scattering at ORNL’s Spallation Neutron Source. Analyzing how these structures impact solid oxide f

A University of South Carolina research team is investigating the oxygen reduction performance of energy conversion materials called perovskites by using neutron diffraction at Oak Ridge National Laboratory’s Spallation Neutron Source.

ORNL scientists used commuting behavior data from East Tennessee to demonstrate how machine learning models can easily accept new data, quickly re-train themselves and update predictions about commuting patterns. Credit: April Morton/Oak Ridge National La

Oak Ridge National Laboratory geospatial scientists who study the movement of people are using advanced machine learning methods to better predict home-to-work commuting patterns.

Coexpression_hi-res_image[1].jpg

While studying the genes in poplar trees that control callus formation, scientists at Oak Ridge National Laboratory have uncovered genetic networks at the root of tumor formation in several human cancers.

Boualem Hadjerioua

Boualem Hadjerioua, a researcher at the Department of Energy's Oak Ridge National Laboratory, has been elected fellow of the American Society of Civil Engineers (ASCE). Hadjerioua, leader of the Water-Energy Technology group in the Environmental Sciences Divis...

Eric Pierce

Eric Pierce, a researcher at the Department of Energy’s Oak Ridge National Laboratory, has been selected by DOE for the Oppenheimer Science and Energy Leadership Program.

ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

NVIDIA DGX-2 systems, powerful GPU-accelerated appliances

As home to three top-ranked supercomputers of the last decade, the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) has become synonymous with scientific computing at the largest scales. Getting the most out of these science machines, however, requires a w...