Skip to main content
Applications for the U.S. Quantum Information Science Summer School are open until March 15, 2024. Credit: Laddy Fields/ORNL, U.S. Dept. of Energy

From July 15 to 26, 2024, the Department of Energy’s Oak Ridge National Laboratory will host the second U.S. Quantum Information Science, or QIS, Summer School.

ORNL’s Nagi Rao discusses the lab’s deployed “dark fiber” testbed for quantum networking at SC23 in Denver, Colorado. Credit: Mariam Kiran/ORNL, U.S. Dept. of Energy

ORNL’s successes in QIS and its forward-looking strategy were recently recognized in the form of three funding awards that will help ensure the laboratory remains a leader in advancing quantum computers and networks.

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems.

2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

QSC Director Travis Humble, who gave a lunchtime talk on transitioning good ideas to device development, learns about one of the many quantum research efforts featured at the poster session. Credit: Alonda Hines/ORNL, U.S. Dept. of Energy

On Nov. 1, about 250 employees at Oak Ridge National Laboratory gathered in person and online for Quantum on the Quad, an event designed to collect input for a quantum roadmap currently in development. This document will guide the laboratory's efforts in quantum science and technology, including strategies for expanding its expertise to all facets of the field.

Gina Tourassi. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy 

Effective Dec. 4, Gina Tourassi will assume responsibilities as associate laboratory director for the Computing and Computational Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory.

A small droplet of water is suspended in midair via an electrostatic levitator that lifts charged particles using an electric field that counteracts gravity. Credit: Iowa State University/ORNL, U.S. Dept. of Energy

How do you get water to float in midair? With a WAND2, of course. But it’s hardly magic. In fact, it’s a scientific device used by scientists to study matter.

An illustration of the lattice examined by Phil Anderson in the early ‘70s. Shown as green ellipses, pairs of quantum particles fluctuated among multiple combinations to produce a spin liquid state.

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.

 A group of ORNL staff standing in a long corridor with flags hanging from the ceiling

For 25 years, scientists at Oak Ridge National Laboratory have used their broad expertise in human health risk assessment, ecology, radiation protection, toxicology and information management to develop widely used tools and data for the U.S. Environmental Protection Agency as part of the agency’s Superfund program.

Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.