Skip to main content
SHARE
Publication

Structure and bonding of a radium coordination compound in the solid state

by Frankie D White, Nikki A Thiele, Megan E Simms, Samantha K Schrell
Publication Type
Journal
Journal Name
Nature Chemistry
Publication Date
Page Numbers
168 to 172
Volume
16

The structure and bonding of radium (Ra) is poorly understood because of challenges arising from its scarcity and radioactivity. Here we report the synthesis of a molecular Ra2+ complex using 226Ra and the organic ligand dibenzo-30-crown-10, and its characterization in the solid state by single-crystal X-ray diffraction. The crystal structure of the Ra2+ complex shows an 11-coordinate arrangement comprising the 10 donor O atoms of dibenzo-30-crown-10 and that of a bound water molecule. Under identical crystallization conditions, barium (Ba2+) yielded a 10-coordinate ‘Pac-Man’-shaped structure lacking water. Furthermore, the bond distance between the Ra centre and the O atom of the coordinated water is substantially longer than would be predicted from the ionic radius of Ra2+ and by analogy with Ba2+, supporting greater water lability in Ra2+ complexes than in their Ba2+ counterparts. Barium often serves as a non-radioactive surrogate for radium, but our findings show that Ra2+ chemistry cannot always be predicted using Ba2+.